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FOREWORD 
This report presents the results of one of the projects participating in the military-effect pro- 
grams of Operation Redwing.   Overall information about this and the other military-effect pro- 
jects can be obtained from WT-1344, the "Summary Report of the Commander, Task Unit 3." 
This technical summary includes: (1) tables listing each detonation with its yield, type, environ- 
ment, meteorological conditions, etc.; (2) maps showing shot locations; (3) discussions of results 
by programs; (4) summaries of objectives, procedures, results, etc., for all projects; and (5) a 
listing of project reports for the military-effect programs. 
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ABSTRACT 
Measurements were made to deteVmine the difference in blast effects over a surface covered 
with low shrubs and grass and over a cleared sandy surface in the precursor region, and an 
attempt was made to correlate this\difference with measurements of preshock sound speed over 
the surface.   Overpressure was measured with ground-baffle gages and with pitot-static gages 
at 3-foot elevation.   Dynamic pressures were measured at the 3-foot elevation with the pitot- 
static gages.   Measurements were mkde at the same ground ranges for vegetated surface as 
for the sandy surface.   The vegetationVeduced the severity of the precursor, showing later 
arrival times and smaller dynamic pressures than over the cleared area.   The overpressures 
over the vegetation were the same at thaground and 3-foot levels.   No measurements of sound 
speed after zero time were obtained, so a correlation is not possible. 
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Chapter I 

INTRODUCTION 
1.1 OBJECTIVE 

Tlie objective of this project was to determine the difference in the blast effects over a vege- 
tated and over a sandy surface in the precursor region and, if possible; to correlate this dif- 
ference with a difference in preshock sound speed. 

1.2 HISTORY 

Blast measurements have been made during most nuclear tests.   The so-called precursor, 
a pressure wave that races ahead of the regular shock wave giving distorted pressure-time 
records, has been observed in many cases.   Lowered overpressures and increased dynamic 
pressures characterize the precursor (References 1, 2, and 3).   It generally occurs on shots 
with fairly low scaled burst heights — from less than 50 to about 600 feet.   Since Operation 
Tumbler, it has generally been believed that precursor formation is due to a gaseous surface 
layer with a sound speed well above ambient.   It is also generally accepted that this layer is 
caused by thermal radiation from the explosion. 

Three methods by which the sound speed can be increased have been suggested;   (1) the ex- 
plosive liberation of water of hydration (the so-called popcorn effect) throws dust particles into 
the air, where they absorb thermal radiation and transfer it rapidly, because of the small size 
of the particles, to the air; (2) heat is transferred to the air by turbulent convective flow of the 
air; and (3) heating of the surface materials releases high sonic velocity gases, such as hydrogen. 

The relative importance of these three methods probably varies with device yield, ground 
range, and type of surface; but the method oi formation of the thermal layer is not at all under- 
stood (References 4,  5,  6, 7, and 8).   Temperature measurements have indicated, in general, 
large temperature rises (up to 2,000 C) that return to nearly ambient before shock arrival. 
Sound-speed measurements have generally shown much lower increases in the sound speed or 
apparent temperature (only 100 C in many cases).   During Operation Teapot, each type of meas- 
urement (References 7 and 8) gave about the same results over all of the surfaces (desert, as- 
phalt, concrete, and vegetation), but the various type? of measurements were in decided dis- 
agreement with each other.   The low values of sound speed and temperature at precursor arrival 
were also in disagreement with the high temperatures inferred from the precursor velocities. 

1.3    DEVELOPMENT OF  EXPERIMENTAL PLANS 

The need for a study of the effect of various surfaces on precursor formation was recognized 
several years ago.   Plans were made to measure overpressure, dynamic pressure, and air 
temperature during Operation Castle on Site Pearl for Shot Echo, over a vegetated surface and 
over a sandy, cleared area.   The shot was cancelled, however, so the study could not be car- 
ried out.    Extensive studies were made in the precursor  region over desert, asphalt, and 
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water surfaces during Operation Teapot.   Construction of a large vegetated area in the Nevada 
desert was not attempted, but small plots of various surfaces, including fir boughs and ivy, 
were instrumented for temperature and sound speed. 

At the inception of Operaüu». ttedwing, a tower shot (Mohawk) was scheduled at the old 
Castle Echo site; therefore, a project similar to the Castle plans was proposed.   Subsequently, 
Shot Inca was added to t he Redwing schedule, and because of the small range in expected yield, 
Inca provided a much better shot on which to make these measurements.   Therefore, Project 
1.10 actually participated on Inca, rather than Mohawk. 

10 
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Chapter 2 

PROCEDURE ond INSTRUMENTATION 
2.1    INSTRUMENTS 

Wiancko pressure gages mounted in ground baffles (Reference 9) and pitot-static gages 
mounted on 3-foot towers were used to measure the overpressure and dynamic pressure.   The 
pitot-static gages were of the design used during Teapot (Reference 10), and utilized the same 
sensing head originally developed by Sandia Corporation (References 11 and 12) in a different 
supporting configuration. 

Sound-speed gages were completely revised versions of the whistle gage tested during Opera- 
tion Upshot-Knothole (Reference 12) and used during Teapot (Reference 13), but the principle of 
operation remained the same.   In these gages air was drawn through an open-ended cavity in a 
manner that excited the natural acoustic frequency of the cavity.   Since this frequency depended 
on the sound speed of the air, a record of frequency versus time could be easily converted to 
sound speed versus time.   The cavity was made of barium titanate and acted as its own trans- 
ducer.   The frequency output of the cavity was amplified by a transistorized amplifier mounted 
at the gage, and the signal was fed directly to the magnetic-tape recording head. 

2.2 RECORDING SYSTEM 

The recording system was the same as that used on Project 1.2 for Shot Lacrosse.   The 
pressure gages formed one arm of four-arm inductance bridges driven at 3 kc.   Consolidated 
Type D System oscillator power supplies and amplifier-demodulators were used along with 
Ampex Model S-3439 magnetic tape recorders.   Backup for the system was provided by the 
recording of each gage on two separate recorders. 

2.3 GAGE CODE 

Gages were given code designations for easy reference following the usual scheme, which 
employed:   (1) a number taken from that of the station; (2) an abbreviation for the type of gage; 
(3) a number giving the height above ground for gages mounted in towers; and (4) a C or V to 
indicate whether the gage was in the cleared area or in the vegetation.   Abbreviations used were 
GB for ground baffle; q and P for the dynamic pressure and the overpressure elements of the 
pitot-static gage; and S for the sound-speed gage. 

2.4 LAYOUT 

The layout on Site Pearl is shown in Figure 2.1.   The pertinent details of the instrumentation, 
along with the predicted values of the blast parameters, are shown in Table 2.1.   A yield of 7 
kt was used for the predictions. 

The project was planned as a minimum effort experiment; thus, no complete coverage versus 
distance was attempted, but it was felt that at least two stations over each surface were neces- 
sary to give sufficient reliance to the results in order that they be useful. 

Exact positions of the gages were chosen by ground and air reconnaissance at the site to 
give continuous ground cover toward ground zero and still not have high bushes immediately in 
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Figure 2.1  Gage layout for Shot'Inca, Site Pearl. 

TABLE 2.1    INSTRUMENTATION AND PREDICTED PARAMETERS FOR SHOT INCA 

Ground Arrival Over- Dynamic 

Station Gage Surface Range Time pressure Pressure 

ft sec psi psi 

116.02 602GBC Cleared 1114 0.21 27 78 

117.01 701q3C, 701P3C, 701S3C Cleared 1114 0,21 27 78 

116.03 603GBV Vegetation 1114 0.19 16 55 
117.02 702q3V, 702P3V, 701S3V Vegetation 1114 0.19 16 55 

116.04 604GBC Cleared 1309 0.288 19 45 

117.03 703q3C, 703P3C, 703S3C Cleared 1310 0,289 19 45 

116.05 605GB Vegetation 1309 0,268 13 21 

117,04 704q3V, 704P3V, 704S3V Vegetation 1309 0,268 13 21 
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front of the gages.   This latter requirement was to give a few milliseconds of recording after 
shock arrival, during which it was known that missiles were not striking the gages. 

The vegetation consisted of some vine (Ipomoea) and grass cover, plus almost complete cover- 
age with broadleaf shrubs (Scaevola) 10 to 15 feet high.   Figure 3.6 is an aerial photograph of the 
site taken before the shot. 

The use of 7 kt for the planning yield gives a scaled height of burst of 105 feet.   This is 
closer to the Upshot-Knothole Shot 1 conditions than Teapot Shot 12.   However, Upshot-Knothole 
Shot 1 had much greater reductions in overpressures than any other shot.  Also, precursor ef- 
fects in the Pacific do not seem to be as strong as in Nevada.   This is why Teapot Shot 12 over- 
pressures, which were higher than Upshot-Knothole Shot 1, are used.   Dynamic pressures in 
the precursor, on the other hand, do not seem to depend appreciably on the height of burst, so 
there is no difference in using Teapot Shot 12 rather than Upshot-Knothole Shot 1.   The asphalt 
data were used for lack of any better.   The vegetation should resemble the asphalt qualitatively 
in the production of smoke and vapors but may not reduce the amount of dust in the air as much. 

These uncertainties in the phenomena must be combined with an uncertainty in the yield and 
in the capabilities of the transducer and recording system.   With regard to the latter, a factor 
of about two greater than set range and a factor of about four smaller can be covered without 
loss of accuracy.   Because of this limitation, set ranges were chosen somewhat higher than 
these predictions. 

13 
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Chapter 3 

RESULTS 
The results for overpressures and dynamic pressures are given in Tables 3.1 and 3.2 and are 
presented versus ground range in Figures 3.3, 3.4 and 3.5,   The values given contain no cor- 
rections for effect of Mach number on the gage reading.   No results were obtained from the 
sound-speed gages after zero time.   An examination of the transistorized amplifiers shows that 
the transistor gain had been reduced to such an extent that the amplifiers no longer functioned. 
The damage appears to be somewhat more severe than subsequent studies have shown is to be 
expected from nuclear radiation alone.   The damage is probably a combination of effects of nu- 
clear radiation and a large electromagnetic transient induced in the circuits at zero time. 

The yield was actually 15 kt, instead of the 7 kt for which the experiment was planned. This, 
of course, means that the gages experienced larger pressures than expected; however, no mal- 
functioning or loss of information resulted. 

3.1   OVERPRESSURES 

Figure 3.1  gives a comparison of the overpressures to the desert and asphalt data from 
Teapot Shot 12, the latter scaled to 15 kt.   An ideal 15-kt curve is shown.   Two features of the 
data stand out.   First, the ground-level pressures in the cleared area are much less than the 
3-foot-level pressures, while in the vegetation they axe about the same.   Higher pressures 
above the ground than at ground level have often been measured in Nevada.   The present data 
are too meager to permit a comparison between the Nevada and Pacific sites on the relative 
spread between the ground and above-ground measurements.   The overpressures measured by 
the pitot-static gage have been calibrated in wind-tunnel tests and found to be high about 10 per- 
cent of the dynamic pressure for Mach 0.9 on axis flow.   For upward flow expected during the 
first few milliseconds the gage may read low.   Since this gage responds to dust in an unknown 
way, no good estimate of Mach number can be made.   However, if the dynamic pressure is as- 
sumed to be all due to air and none to dust, an upper limit is found by calculating the Mach num- 
ber M (Reference 10) from 

P' _i 
Ps' AP'  + P0 

p    _  q'  + AP' + P0   _ (■^M')-' 

Where Pp is as read total pressure and Ps'  is the as read static pressure.   Using the peak value 
of AP for gages 701 P3C and 702 P3V and measured q's at corresponding times, we find M = 0.65 
and M = 0.95.   Thus, since dust very apparently was contributing, the actual Mach number is 
lower than this and the correction is probably less than this 10 percent of q and cannot explain 
the difference between surface and 3-foot measurements.   Second, the wave over the cleared 
area has a front porch,1 while over the vegetation nothing that could really be called such is ap- 

1 By a "front porch" is meant a rise to an intermediate steady pressure preceding the main 
peak. 
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parent; rather, the wave is just a slow-rising pressure pulse.   Arrival times bear out this ob- 
servation, since arrival time is earlier in the cleared area than in the vegetation.   However, 
the main peaks occ' r at about the same time over both surfaces. 

The scaled height outburst (yield, 15 kt) of this shot was about 80 feet, near the scaled heights 
of the Greenhouse Shots Dog and Easy.   The pressure waves on those shots were also noted for 
the short length of their front porches and the early death of the precursors, as compared to 
Nevada shots. 

3.2    DYNAMIC PRESSURES 

The dynamic pressures are compared to the Teapot data in Figure 3.2, plotted against 
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Figure 3.1   Overpressure 
versus ground range. Figure 3.2  Dynamic pressure 

versus ground range. 

ground range.   The cleared area exhibited higher pressures than the vegetated area, particu- 
larly at the closer stations where the precursor was stronger.   At the stations farthest from 
ground zero, the dynamic pressures were well below the Teapot curves, indicating an early 
cleaning up of the precursor. 

At about 0.2 second after shock arrival at the two stations in the vegetation,  an anomalous 
rise in the q records was observed (Figure 3.3).   A check of the instrumentation indicated that 
these signals actually came from the gages but did not represent a real q but rather,  as post- 
shot inspection showed, were caused by the pilot opening (the front opening on the gage) becom- 
ing clogged with dust and vegetation carried by the precursor.   Since the side or static opening 
was not clogged,  its pressure continued to drop, while the pressure at the front remained con- 
stant because ot the plugging.   This, of course,  led to an increasing differential that was re- 
corded as a q. 

The dynamic-pressure measurements arc reported as read with no corrections for Mach 
number characteristic of the gage.   It has been pointed out in the AFSWP conference previously 
mentioned that with only the pitot tube no valid correction can be made because of the unknown 
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Figure 3.3  Overpressure versus time. 
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Figure 3.3  Continued. 

effect of the dust,  and in any case the upper limit of the correction has been shown to be small 
in the overpressure discussion. 

3.3    EFFECT OF VEGETATION 

Figure 3.6,  taken before the shot,  and Figure 3.7, a postshot photograph,  emphasize the 
effect of the blast on the vegetation, with the island swept completely clear of all standing 
shrubs.   Underfoot is a thick matting of dead sticks, vines, and grass in a sort of mulch mixed 
with sand.   There is a definite lack of evidence of charred or burned material,  indicating that 
whatever vegetation burned was blown clear of the island by the blast. 

The precursor was weaker in the vegetation:   Arrival times were later and overpressures in 
the vegetation were higher than ground-level pressures in the cleared area,  though lower than 
the 3-foot pressures there.    Dynamic pressures were less than over the cleared line. 

All these differences must be attributed to the vegetation.   The most interesting result is the 
fact that pressures at both levels in the vegetation were essentially the same.   This was probably 
due to mechanical interaction of the vegetation with the shock, since the vegetation did provide 
almost continuous cover to a 10-foot height.   The resulting turbulence could easily have pro- 
duced a uniform layer at least 3 feet thick on the ground.   An additional factor is that there may 
have been some uniformity even before shock arrival, because the foliage would have absorbed 
energy at various heights above the ground, promoting uniformity of itself and increasing turbu- 
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20 

CONFIDENTIAL 



u 

-M 
o 

X! 
CO 

0) 

o 
0) 

I—( 

o 
PH 

0) 
+-> 

CO 

CD 

co 

0) 

& 
•iH 

21 

CONFIDENTIAL 



f \ vft:;^#' m öSMSöSS m 

22 

CONFIDENTIAL 



lent convection. 
In Section 2.5, by analogy to Teapot Shot 12 asphalt and desert lines, a stronger precursor, 

i. e., earlier arrival, times and lower overpressures, was predicted over the vegetation than 
over the cleared area.   This analogy was used for lack of anything better.   The experimental 
results did not follow this prediction, as has been pointed out above.   The principal difference 
between the vegetation and the asphalt surfaces is the spatial extension of the vegetation above 
the surface.   This affects the precursor growth, both by changing the distribution of the thermal 
energy deposition in the air and by providing a mechanical diffuser to slow down the wave and 
make the pressure through the vegetation layer uniform. 

Projecting these results to other vegetated surfaces, it appears that qualitative prediction 
of precursor strength can be made on the basis of density, height, and strength of the vegetation. 
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Chapter 4 

CONCLUSIONS 
Vegetation consisting of grass, vines, and iO-foot shrubs reduced the severity of a precursor 
compared to one over a clear sandy surface.   Overpressures were about the same at the ground 
and 3-foot levels in the vegetation, while over the cleared area the 3-foot level had much higher 
pressures than ground level.   Overpressures in the vegetation were higher than ground-level 
pressures in the clear, but lower than 3-foot pressures there.   Dynamic pressures were much 
reduced in the vegetation. 

A qualitative prediction of precursor severity for various forms of vegetation can be made 
from these and Teapot results, i. e., the higher, denser, and stronger the vegetation, the weaker 
the precursor.   With our, as yet, incomplete understanding of details of precursor phenomena, 
further measurements over other surfaces would be required if more quantitative predictions 
are required. 
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